If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-24n+72=0
a = 1; b = -24; c = +72;
Δ = b2-4ac
Δ = -242-4·1·72
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{2}}{2*1}=\frac{24-12\sqrt{2}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{2}}{2*1}=\frac{24+12\sqrt{2}}{2} $
| x2+9x+25=0 | | 2(k)-3(2k-3)=45 | | 2(k)-3(2k-3)=45(k=-9) | | 0.4(p-24)=0.8p | | 3(2x-20)+49=175 | | 45=5y-10 | | 2(k)-3(2k-3)=45k=-9 | | 3y+10=52 | | 2(k)-3(2k-3)=45k+-9 | | 15c-10c^2=0 | | 5.99x=(39-x)24 | | 5=2u-11 | | 3(5z+2(9z-11)=4(8z-7)-111 | | (1/3x)+(1/4x)=2-(17/12x) | | m÷-5+6=-4 | | 2t+8=t+2 | | 5.99x=39-x(24) | | 45x^2+36=0 | | (5x−3)=2 | | -6x+8=x+9-7x-1 | | 1/6j+1/4=1/3+1/4j | | (3x)/5-(1x)/10=(1x)/2+1 | | 0.4(8-0.2)w=-4 | | 0.4(8-0.2w=-4 | | −6=x/4−1 | | −6=x4−1 | | 6x-1=16x-30 | | 5-7w=8w+2 | | 4(5x-4)-5(2x-7)=3(3x+5)-11 | | 4(-3x-1)-4x+2=-26 | | (67+30)*x=400+30x | | 4b=8b-88 |